skip to main content


Search for: All records

Creators/Authors contains: "Qian, Chenhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 11, 2024
  2. null (Ed.)
  3. null (Ed.)
    Defects have a profound impact on the electronic and physical properties of crystals. For two-dimensional (2D) materials, many intrinsic point defects have been reported, but much remains to be understood about their origin. Using scanning transmission electron microscopy imaging, this study discovers various linear arrays of W-vacancy defects that are explained in the context of the crystal growth of coalesced, monolayer WS2. Atomistic-scale simulations show that vacancy arrays can result from steric hindrance of bulky gas-phase precursors at narrowly separated growth edges, and that increasing the edge separation leads to various intact and defective growth modes, which are driven by competition between the catalytic effects of the sapphire substrate and neighboring growth edge. Therefore, we hypothesize that the arrays result from combined growth modes, which directly result from film coalescence. The connections drawn here will guide future synthetic and processing strategies to harness the engineering potential of defects in 2D monolayers. 
    more » « less